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Abstract

Neural encoder-decoder models have shown significant promise in sequence transduc-

tion tasks such as machine translation and, more recently, text summarization. Such

models rely on a latent space representation of the source sequences, learned by the

encoder, to pass to a decoder for generation of a target sequence. Understanding and

evaluating what information the latent representations learn remains a significant chal-

lenge. Multitask learning aims to solve several tasks simultaneously using learned

representations that are shared across different tasks. Our research investigates learned

latent space representations of the encoder in the context of different sequence trans-

duction tasks and multitask learning. We make use of a novel dataset of news articles

from the Guardian newspaper, which are accompanied by metadata including short

summaries and topic tag sequences for articles. We train separate encoder-decoder re-

current neural network models to generate (a) abstractive text summaries of the articles

and (b) topic tag sequences related to the article content. We first establish high quality

benchmarks in the new dataset and on the new task. We then perform experiments

using our models to manipulate the latent representations learned by the models using

multitask learning. We train an encoder-dual-decoder model to perform both sum-

marization and tag sequence generation simultaneously. Whilst performance of the

single task models is good the multitask model fails to learn to generate high quality

sequences. We evaluate learned representations using transfer learning with a semantic

classification task. We show that the tag sequence generation model learns represen-

tations that are more useful for the semantic classification side task and by training

a summarization model with a multitask objective we induce a similar performance

increase on the side task.
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Chapter 1

Introduction

1.1 Motivation

The advent of deep neural network approaches to machine learning, and their appar-

ent success, has led to a paradigm shift across many domains of computer science

research, and in several cases dramatically increased the state-of-the-art, including

speech recognition, visual object recognition, object detection and language modelling

(LeCun et al., 2015). However, these new methods come with a new set of challenges

that require understanding if we are to effectively make use of them for real-world

tasks.

A key aspect of machine learning is the process of representation learning; the pro-

cess of transforming source data into an alternative form of features that is more useful

in the context of a given task. Non-neural methods typically involve hand-engineering

of these features, which makes them explicit. Neural methods, however, learn these

feature representations implicitly; dependent on an explicitly specified architecture.

This creates a trade-off between increased expressibility but decreased interpretability

(LeCun et al., 2015): it is less clear what information in the source data the learned

representations reflect. This has led to deep neural network (DNN) methods being de-

scribed as ”black boxes” (Shwartz-Ziv and Tishby, 2017) and to a new area of research

around understanding representation learning and improving interpretability.

This research investigates representation learning in the context of abstractive sum-

marization using a novel dataset. The dataset is a collection of news articles from the

Guardian newspaper 1 with summaries and topic information. Abstractive summa-

rization refers to the task of generating a shorter summary from a longer source text

1www.theguardian.com

1



2 Chapter 1. Introduction

without relying on explicitly copying entire phrases from the source text (which is

known as extractive summarization) (Rush et al., 2015). Abstractive summarization

requires a model that can generate sequences of fluent and adequate text, which is

considered more challenging than identifying text to be extracted since it additionally

requires information about how to generate natural language (Rush et al., 2015). A key

question this research investigates is whether abstractive summarization also learns in-

formation regarding the global semantics of a source text, in particular regarding the

abstract semantic class of a whole document. To investigate this question we present a

side task as a metric for semantic information contained in the learned representations

by evaluating their capacity for transfer learning (TL). Each article appears within a

section of the newspaper, such as politics, fashion or football, which we use as a global

semantic category label.

We introduce a novel application of the encoder-decoder model to generate topic

tag sequences that are metadata associated with each document. These are not natural

language but we treat this as a sequence generation task as an experiment to explore

whether these models can also handle more general sequences. Finally we train a mul-

titask learning (MTL) model that is capable of both summary generation and topic tag

sequence generation (TTSG) simultaneously. We hypothesize that the auxiliary TTSG

task will encourage the model to learn more semantically aligned representations that

also lead to higher quality summaries.

We evaluate global semantic information of the latent representations by training a

classifier, using TL, on top of intermediary layers in the models to investigate whether

the learned representations retain information about the global semantic class of the

source text. We use this novel evaluation tool to compare learned representations

across our models for single-task summarization, single-task TTSG and MTL mod-

els for join summarization and TTSG.

1.2 Objectives

This work has five objectives: to describe a novel dataset in the context of encoder-

decoder architectures for sequence transduction; to create baseline models for the

task of abstractive summarisation with the new dataset; to provide some insights into

learned text sequence representations by analyzing the outputs of the encoder and using

an auxiliary semantic classification task to measure semantic information of the repre-

sentations; to investigate a novel application of encoder-decoder models for generating
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topic tag sequences; and to investigate whether MTL on abstractive summarization

and TTSG improves performance on either or both tasks, and whether the MTL en-

courages the encoder to learn more global semantic information (as measured by our

novel auxiliary TL semantic task).

1.3 Summary Results

We are able to train good benchmark models using the novel dataset and achieve

ROUGE-1 scores of 35.94 with a Pointer-Generator Network (a recent state-of-the-

art, SOTA, model; See et al. (2017), and 26.60 with our own Encoder-Decoder with

attention model (model similar to Luong et al. (2015a)), which is an improvement over

the same model architecture trained using Open-NMT (Klein et al., 2017).

This model was also reasonably capable of learning to generate the topic tag se-

quences, scoring a F1 score of 58.73 (Open-NMT model, 140k steps) and 42.49 (our

model, 15k steps). Our model outperformed the Open-NMT model at equivalent train-

ing steps, however our model was slow to train and we were unable to extend training

to match the Open-NMT model.

Despite the relative success of the two single-task models, training by MTL led

to catastrophic failure, and the model was unable to generate good sequences for ei-

ther task. The model appears to overfit high-frequency tokens leading to repetition

behaviour maximizing precision but leading to poor recall and inadequate, non-fluent

outputs.

For the semantic side task we demonstrate a performance range between a lower

bound of 12.4% (chance level) and 23.75% (accuracy achieved by a fully-trained task-

specific model). We show that the summarization single-task model learns some infor-

mation useful for the TL semantic task but less than is learned by the TTSG model or

the MTL models. Despite the inadequacy of the MTL outputs, the auxiliary task does

seem to have behaved as expected and imbued the latent representations with more

semantic information.

1.4 Document Structure

The structure of this document is as follows: chapter 1 (this chapter) provides an intro-

duction to the work, outlining the motivation, research questions and objectives, and

a brief summary of results, chapter 2 contains background literature for this research,
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chapter 3 describes the dataset, chapter 4 details the methods and implementation for

the research, chapter 5 reports the findings, our analysis and relevant discussion and

chapter 6 draws conclusions and considers implications for future work.



Chapter 2

Background

2.1 Neural Networks

Deep neural networks are now the status quo for many machine learning problems. A

single layer neural network (also known as a perceptron) is a combination of affine

transformations, whose parameters are learned by gradient descent by backpropaga-

tion of errors, and a non-linear activation function (Rumelhart et al., 1986). Multiple

networks can be stacked on top of each other, where the outputs of one layer become

the inputs of another, to form [in this case] a multilayer perceptron (MLP, equations

2.1 & 2.2, figure 2.1).

y = g(W(1)h+b(1)) (2.1)

h = f (W(2)x+b(2)) (2.2)

Where f is the sigmoid function and g is the softmax function.

MLPs have been shown to be universal function approximators (Hornik et al.,

1989); that is, they have the capacity to represent any mathematical function 1. This

is a mixed blessing since it means that the function may have very high complexity

whilst also being learned implicitly; in other words it might present with very high

performance but without any explicitly interpretable explanation as to how it does so.

1This does not mean that they will learn any function, only that they theoretically have the capacity
to. The learned function is still constrained in practice by the data, architecture and hyperparameters

5



6 Chapter 2. Background

Figure 2.1: Diagram of a 2 layer perceptron. From Renals (2017).

2.2 Representation Learning

Neural networks trained by supervised learning are considered to perform a kind of

representation learning (Goodfellow et al., 2016). For example, if we consider a model

where the final layer is a softmax regression classifier, the ideal representation for the

penultimate layer would be one where all classes are linearly separable.

Figure 2.2 shows a two dimensional approximation2 of MNIST handwritten digits

based on their vectorized pixel representation whilst figure 2.3 shows the same dig-

its using the latent space (i.e. hidden layer outputs) from a neural network classifier

model. It is clear that the representations learned by the model are more suitable for

the task of classifying digits since the clusters of matching digits are denser and more

coherent.

For more complex models it is not always clear what the ideal learned representa-

tion is. Bengio et al. (2012) provide suggestions for qualities (or ”priors”) that good

representations should have, including natural clustering; the idea that different classes

of entities should form natural clusters in the latent space, as shown in figure 2.3. Our

research approaches this question in the context of encoder-decoder models for text

generation (detailed later in this chapter) by probing whether the encoder learns infor-

mation relevant for other linguistic tasks, such as global semantic classification (pre-

2using t-distributed Stochastic Neighborhood Embedding, or t-SNE.
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Figure 2.2: A 2 dimensional projection of the image space for MNIST digits. From

Despois (2017).

Figure 2.3: A 2 dimensional projection of the latent space for MNIST digits. From

Despois (2017).

dicting whether a text is about football or politics), which, intuitively, seems important

for the task of abstractive summarization. Alternatively, the model may be learning a

complex copying function that simply relies on positional information and therefore
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learn nothing about the semantics of the document.

2.3 Word Embeddings

Word embeddings are a method for converting discrete text into real-valued vectors that

capture linguistic regularities (Bengio et al., 2003). They typically lead to significant

improvements when training DNNs on natural language (Luong et al., 2013). They

are also usually formed from the latent space representation of a model (although not

necessarily deep or neural). For example, one method, known as skip-gram (Mikolov

et al., 2013b) iterates through the text in a document word-by-word and gathers the

surrounding context words, C = {c�n, ...,c�1,c+1, ...,c+n}, to either side of this pivot

word, w0. A model is then trained to predict the context words, C, one by one, given

the pivot word, w0. In practice this model is often approximated by training a classifier

over a set of candidate context words, C0 using negative sampling (Mikolov et al.,

2013a). Once the model is trained, the last layer of the model which predict the context

word (or discriminates between candidate context words) can be discarded since we are

only interested in the mapping function from a word as input to the real valued vector

in the latent space of the model. Figure 2.4 shows a two dimensional approximation

(using t-SNE) of the high dimensional vector space learned by training skip-gram on

Harry Potter novels; it is clear that distributionally related words appear closer in the

embedding space.

There are a number of methods for generating useful latent space representations

of words. In this research we use pre-trained GloVe representations (Pennington et al.,

2014). GloVe representations are similar to skip-gram representations but they directly

consider word occurrence statistics (whilst skip-gram is only exposed to this infor-

mation implicitly). The GloVe algorithm constructs a co-occurrence matrix of words,

which is then factorized to reduce it’s dimensionality.

2.4 Natural Language & Recurrent Neural Networks

A defining attribute of natural language is that units of meaning, be they words, phrases,

sentences, or paragraphs can be of arbitrary length. For some time this made language

data difficult to work with using DNNs since most of the architectures required inputs

of fixed size. Recurrent neural networks (RNN) are a family of architectures that are

capable of encoding variable length inputs. With RNNs we define a scale of interest
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Figure 2.4: Word embeddings trained by skip-gram on all 7 Harry Potter books. From

Despois (2017).

(e.g. characters, words, phrases) and we step through the input data item by item.

Whilst other model architectures only consider the immediate inputs connected to the

network at a given timestep, RNNs have a memory, they preserve the hidden represen-

tation from the previous timestep, ht�1 and include this with the hidden representation

of the current timestep, ht (e.g. by adding the two vectors; see equations 2.3 and 2.4

and figure 2.5).

ht = tanh(Whhht�1 +Wxhxt) (2.3)

y = g(Wyhht) (2.4)

where y are the outputs of the RNN, ht are the hidden states at the current timestep,
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Figure 2.5: Diagram of rolled and unrolled RNN. From Olah (2017).

xt are the inputs at time t, Whh,Wxh,Wyh are initialized weight matrices, and ht�1 is

the hidden state from the previous timestep. g is a non-linear function that is appro-

priate for the desired output, for example, a language model might predict the next

word in the sequence, y, where x1, ...,xt are the preceding words, by estimating the

probabilities of words in a fixed size vocabulary, V , with g as a softmax:

p(y) =
T

’
t=1

p(y j|xt , ...,x1) (2.5)

p(y j = 1|xt , ...,x1) =
exp(w jht)

ÂK
j0=1 exp(w j0ht)

(2.6)

for all possible words, j = 1, ...,K, from the vocabulary, V , where w j are the rows

of the weight matrix from equation 2.4, Wyh.

Whilst RNNs like this solved the variable length input problem they were shown to

have limitations in practice, in particular, they were prone to vanishing gradients lead-

ing to an inability to preserve signals from inputs many timesteps prior; effectively

truncating the memory (Bengio et al., 1994). Long Short-term Memory (LSTM) net-

works were developed to address this issue, by adding a number of learned soft gating

functions to the RNN they are able to preserve long-range signal dependencies when

appropriate (Hochreiter and Schmidhuber, 1997). LSTMs and other similar architec-

tures enable the use of long input sequences such as multiple sentences or even whole

documents. This is important for our research since we are training models to respond

to entire documents as inputs.
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2.5 Sequence Generation & Encoder-Decoder Models

Tasks such as document summarization and language translation require models that

can not only consider variable length inputs but also generate variable length outputs.

Cho et al. (2014) proposed the RNN encoder-decoder model3 which uses a RNN to

take inputs of arbitrary length and encode these to a fixed size vector representation,

and a second RNN that takes this latent representation as an input and generates an

output of variable length, determined by the prediction of a terminal symbol. They

demonstrate this model in the context of machine translation and demonstrate, qualita-

tively, that the model learns a semantically and syntactically meaningful representation

of linguistic phrases (Cho et al., 2014).

Figure 2.6: Diagram LSTM Encoder-Decoder model for generating e-mail replies. Here

the output of the encoder is referred to as a ’thought vector’. From Britz (2016).

The loss of an encoder-decoder model is calculated over a target sequence. The

encoder RNN is as described in the previous section. The decoder RNN differs in that

it is conditioned on more information. It considers an input, c, which is the output

of the encoder, the last state of the RNN after forward propagation through the whole

input sequence, the previous hidden state of itself, h(dec)
t�1 , but also the previous output

of the decoder, t�1. The hidden state of the decoder at time t is given by,

h(dec)
t = f (h(dec)

t�1 ,yt�1,c) (2.7)

Whilst the conditional probability of the next symbol is

P(yt |yt�1,yt�2, ...,y1,c) = g(h(dec)
t ,yt�1,c) (2.8)

3a similar model was proposed by Sutskever et al. (2014) at the same time, known as se-
quence2sequence or seq2seq
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The encoder and decoder are jointly trained to maximize the conditional log-likelihood

max
q

1
N

N

Â
n=1

log pq(yn|xn) (2.9)

2.6 Attention Mechanisms & Interpretability

Bahdanau et al. (2014) identified that the fixed-length encoder output vector used as

the input to the decoder acts as a bottleneck and proposed an Attention mechanism

that enables the model to learn a soft-search function allowing it to selectively attend

to parts of the source sequence. They show that, for the task of machine translation,

that this function seems to learn alignment between source and target sequences (Bah-

danau et al., 2014). Alignment is the process of associating a single output symbol

with one (or sometimes more) input symbol when performing sequence transduction.

It learns alignment in the case of translation since this information is highly relevant for

the task, however it may learn other functions for different tasks (figure 2.7 is visuali-

sation of attention weights, that show some characteristics of alignment) (Ghader and

Monz, 2017). Bahdanau et al. (2014) report a new state-of-the-art score for machine

translation as measured by BLEU score4 and, in particular, improved performance on

translating long sequences.

Ghader and Monz (2017) study in the function of attention in machine translation

in more detail, concluding that for nouns, attention tends to learn alignment but for

verbs, attention is often more diffuse, referring to other words outside of the scope

of alignment. A number of different implementations for attention have since arisen,

in particular, Luong et al. (2015a) investigate several different flavours of attention

and their efficacy. They investigate global and local variants of attention that consider

either all source words or a subset of source words at a time, respectively. They show

that attention mechanisms add about 5.0 BLEU points over non-attentional state-of-

the-art (SOTA) systems. They use an ensemble of their proposed methods to produce a

new SOTA result for English to German translation outperforming previous approaches

by over 1.0 BLEU.

A useful side affect of attention is that it naturally lends itself to visualisation and

lets us peek at the inner workings of DNN to understand what regions of an input

the model considers important for the task at hand. As we have seen already, this

4BLEU is a precision-centric metric often used to evaluate machine translation and sequence trans-
duction tasks, e.g. see Bahdanau et al. (2014).
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Figure 2.7: Attention matrix showing a learned soft alignment function for machine

translation. From Bahdanau et al. (2014).

has been useful for establishing that for NMT, attention leans alignment-like functions

with some variation, particularly when considering verbs.

2.7 Text Summarisation Models

The aim of text summarization is to produce a condensed representation of an input text

that captures the core meaning of the original (Rush et al., 2015). One approach to this

problem which has had good success is known as extractive summarization, in which a

model learns to copy phrases from the original source text (e.g. Narayan et al. (2017)).

Abstractive summarization, on the other hand, attempts to produce a bottom-up sum-

mary, which may contain novel content not found in the original source. High quality

summarization includes sophisticated techniques such as paraphrasing, generalization,

or incorporating real-world knowledge that cannot be attained via an extractive only

approach (See et al., 2017). Rush et al. (2015) approached the problem of abstractive

summarization taking a data-driven approach inspired by the success of attentional

encoder-decoder models such as Bahdanau et al. (2014), as described in the previ-

ous section. This approach, Attention-based summarization (see figure 2.8), forms the

backbone of our own research, and is discussed in detail in the methods section in
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chapter 4. Their model also includes several other features that improve performance

including a beam-search decoder as well as features to facilitate conditional extraction

functions.

Figure 2.8: A learned attention matrix for abstractive text summarization between the

source text (right) and the generated summary (top). It includes examples of copying,

paraphrasing with a synecdoche, and grammatical reframing behaviors. From Rush

et al. (2015).

Further improvement to the SOTA was made by See et al. (2017) with Pointer-

Generator networks. They noticed shortcomings with other neural abstractive systems

when having to reproduce facts from the source text and also that they tended to be

repetitive. They contributed two innovations; firstly a method for learning to copy

via pointing and secondly, a method called coverage, which keeps track of what has

already been summarized, discouraging repetition (See et al., 2017). Put simply, the

pointer-generator component involves learning an additional generation probability;

the probability that the model should generate versus copy. The final probability for a

word, w, if given by

Pf inal(w) = pgenPvocab(w)+(1� pgen) Â
i:wi=w

ai (2.10)

in other words, the final probability is the sum of the probability under the language

model and the probability under the attention model over the whole source sentence.
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Figure 2.9: A pointer-generator model. For each decoder timestep a generation prob-

ability pgen 2 [0,1] is calculated, which weights the probability of generating from the

vocabulary versus copying from the source. The blue represents contribution from at-

tentional copy model and the green from the generative model. From See et al. (2017)

Coverage is modeled as an extra term in the attention computation that is the sum

of all previous attention weights for the current decoder sequence. This ensures that the

attention mechanism is aware of previous attention states and discourages repeatedly

attending to the same locations. They also define a new loss function, the coverage

loss, which penalizes repeatedly attending to the same location. This loss as added

to the primary loss function to create a composite loss that serves to optimize over

transduction accuracy and coverage.

2.7.1 Evaluating Summarization

Evaluating summarization effectively remains an open challenge (Novikova et al.,

2017). There are two main approaches; human and automatic evaluation. Human

evaluation is still considered the gold standard but is very resource intensive. Auto-

matic approaches alone are frequently reported in the literature. Most methods revolve

around measuring relevance, and do so by computing either the precision or recall of

an output relative to the reference sequence. In the context of sequence generation of

tokens, precision, P, is ratio of the relevant generated tokens (i.e. generated tokens
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found in the reference), {tokrel}\{tokgen}, to all generated tokens, {tokgen}

P =
|{tokrel}\{tokgen}|

|{tokgen}|
(2.11)

whilst recall is the ratio of relevant generated tokens, {tokrel}\ {tokgen}, to all

relevant tokens, {tokrel}

P =
|{tokrel}\{tokgen}|

|{tokrel}|
(2.12)

Precision and recall have been modified for the specific case of sequence gener-

ation to create BLEU and ROUGE metrics, respectively, which extend precision and

recall to account for maximum number of reference token appearances, addressing the

issue of repetition, and for longer n-gram sequences (Papineni et al., 2002; Lin, 2004).

Machine translation relies heavily on the BLEU score, which is a precision-centric

metric. Whilst precision is important in summarization recall is typically considered

to be of greater importance.

2.8 Multitask Training in NLP

Collobert and Weston (2008) showed that it was possible to solve a host of NLP tasks

using a single (albeit complex) model by framing all tasks as different forms of se-

quential word-level classification (the tasks include part-of-speech tagging, chunking,

named entity recognition, semantic role labeling, language modelling, and synonym

recognition). A few aspects of the model are different to the models we have consid-

ered so far; they use 1D convolutions rather than RNN and they take a maxpool over

time of the encoder states to form the latent representation (as opposed to simply select-

ing the last state). Perhaps their most interesting finding (from our perspective) is that

the joint training across multiple tasks appears to confer performance improvements

across all tasks. They speculate that this is due to the learned representations being

higher quality from learning more complete information regarding linguistic regular-

ities (Collobert and Weston, 2008). This finding is not in isolation, Liu et al. (2015)

show that multitask training leads to improved information retrieval; Pasunuru et al.

(2017) use multitask training on abstractive summarization with entailment generation

to improve quality; along similar lines Guo et al. (2018) improve abstractive summa-

rization with both entailment and question generation tasks. Ruder (2017) provides

a helpful overview of the multitask learning (MTL) paradigm and recently Salesforce
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Research released the Natural Language Decathalon (McCann et al., 2018) a chal-

lenge benchmark for MTL models to perform ten (existing benchmark) NLP tasks,

along with their own model setting an impressive benchmark beating the single-task

SOTA on several of the tasks.

It is not definitively clear as to why MTL leads to improved global performance

however the accepted wisdom is that the shared representations allow better general-

ization on tasks, discouraging overfitting and acting as a form of regularization (Mc-

Cann et al., 2018). There are different methods for performing MTL, for instance

hard and soft parameter sharing, where tasks share layers of the model or where tasks

have separate models but the distance of the parameters across models is regularized,

encouraging similar representations. Our research focuses on hard parameter sharing.

2.9 Transfer learning in NLP

Transfer learning refers to the practice of pre-training a model using some task other

than it’s final intended task followed by a fine-tuning process on the intended task

(Bengio, 2012). This approach has led to significant performance gains over models

trained only on the primary task (Howard and Ruder, 2018). Typically transfer learning

is used when there is a poverty of task-specific data but there is some within domain

task with a dearth of similar data. Pre-training on the related task can lead to im-

provements on the primary task (Pan et al., 2010). For example, Johnson et al. (2016)

make use of transfer learning to perform ”zero shot” language translation by training

cross-lingual embeddings. In our work we use transfer learning as a method for evalu-

ating the learned representations of our models to see how well they generalize to other

related tasks.





Chapter 3

Data

3.1 Datasets & Tasks

The Guardian news article data were collected from their public data API1 in json

format. They contain article body texts as well as metadata on articles including a

title, a trail text (a short summary that compliments the title), topic tags (multiple per

article), the URL, and the word count. We use the article body text as the input to our

models and create several targets for our different tasks with the metadata.

For the primary summarization tasks we take the article title and append the trail

text as a separate sentence. This forms a relatively high quality 2 or 3 sentence sum-

mary of the article based on a qualitative assessment (see figure 3.2 for an example).

For our secondary sequence generation tasks we use the topic tags, this is a variable

length sequence of topics that journalists have linked to the document, such as ”Don-

ald Trump”, ”Brexit”, ”Theresa May”, ”addiction”, ”E3”, and so on. In the corpus

there are 11250 unique tags and 1,205,870 tag events with an average of 4.73 tags per

article, figure 3.4 shows the distribution of tags. Figure 3.3 shows an example topic tag

sequence, comparing this to the matching reference summary in figure 3.2 we can see

that the topic tags align with several keywords in the summary.

For the TL side task, designed to measure information about the global article

semantics, we use the section labels (e.g. ”politics”, ”football”, ”fashion”; 11 in total,

see table 3.1) as a multi-class classification target, trained over the latent space article

representations. All data were split into training (80%), validation (10%) and test

(10%) datasets after filtering (see table 3.1).

1Available at https://open-platform.theguardian.com/
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”barclays was lambasted about big bonuses , tax avoidance and speculating on food

prices at its annual shareholder meeting yesterday the first since last years libor rig-

ging scandal as the embattled banks new chairman admitted bankers pay was excessive

. the appointment of sir david walker as chairman failed to prevent a string of share-

holders berating the board about pay . one investor , joan woolard , told the banks

directors that anyone who needed more than 0m to live on was just a greedy bastard

. barclays , run by antony jenkins since bob diamond quit as chief executive in july in

the wake of the 000m libor fine , admitted it paid 000 employees at least 0m last year .

woolard called on the board to follow her example and donate their homes to charity

. describing herself as a 00-year old widow from lincolnshire , she twisted the slogan

adopted by jenkins , who began his presentation to the 000 shareholders assembled

in royal festival hall in london with his vision of turning barclays into the go to bank

....”[truncated]

Figure 3.1: An example article body text.

”barclays boss promises investors he will crack down on excessive pay . sir david

walker berated by shareholders at london agm as beleaguered board tries to shake off

libor rate rigging scandal .”

Figure 3.2: An example reference summary.

”barclays, banking, antony jenkins, libor”

Figure 3.3: An example topic tag sequence.

3.2 Article Texts

For the article body texts, HTML was removed using beautiful soup and text strings

were tokenized into words and punctuation symbols. Token count distributions were

analysed and the majority of documents contained between 300 and 1200 tokens, with

a median token length of 734 (mean 986.96), see figure 3.5. However, there were a few

articles with a large token count up to 40,122 and over 16,000 documents had a token

count of zero. Further investigation revealed that the documents with a zero token

count usually contained videos or images only, indicated by the keywords video and

gallery in the URL. We removed all documents from our dataset that were either video

or image galleries or had a token count below 100. We assume that 100 words is the

minimum length for a small paragraph carrying enough meaning for summarization to
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Figure 3.4: Tag frequencies across for all articles. This shows an extreme distribution

with a very long tail; it is clear that tags do not follow Zipf’s law.

be appropriate. For the purpose of this study we truncate all articles to a maximum

of 400 tokens (i.e. word, number, or punctuation symbol), this is to ensure that we

do not exceed memory constraints on the GPU and to ensure that training times are

reasonable.

After filtering we are left with a dataset of 255,079 documents, having dropped

around 20,000 documents, with a total of 251,751,864 symbols (prior to truncating

articles). The articles come from different sections on the news site and there is sig-

nificant class imbalance as seen in figure 3.6. Table 3.1 comprises the exact number of

documents per set for each class.

A number of preprocessing steps were taken to prepare the article texts for the tasks

and models, and to optimize the efficacy of word embeddings. All body text was con-

verted to lower case to avoid multiple word embedding IDs and non-ascii characters

were removed. Punctuation was retained as the embeddings we use do have punctu-

ation embeddings and these may be useful in summarization (for example, informa-

tion within commas, like this, may be auxiliary and more appropriately represented if

punctuation is left intact). Numerals were normalised, replacing digits with a zero. For

example, 12.05.2016 became 00.00.0000 and 46 million became 00 million. This pre-

serves some semantic information regarding numbers whilst reducing the sparsity of
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Figure 3.5: Distribution of article symbol length (truncated to 12000).

Figure 3.6: Class distribution of preprocessed data.
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CLASS TRAIN VALID TEST TOTAL

BUSINESS 26,356 3,294 3,295 32,945

CULTURE 5,944 742 744 7,430

ENVIRONMENT 13,381 1,673 1,671 16,725

FASHION 4,720 590 590 5,900

FOOTBALL 38,703 4,838 4,838 48,379

POLITICS 18,959 2,370 2,370 23,699

SPORTS 38,879 4,860 4,860 48,599

TECHNOLOGY 13,392 1,674 1,675 16,741

TRAVEL 5,016 627 628 6,271

UK-NEWS 19,089 2,386 2,387 23,862

WORLD 19,664 2,453 2,453 24,528

TOTAL 204,061 25,507 25,511 255,079

Table 3.1: Number of documents per class for training, validation and test set.

numbers (this can lead to low probabilities in the language model, since exact numbers

may only appear a small number of times).





Chapter 4

Methods

4.1 Overview

Since we introduce a new dataset for summarization, we first aim to establish high

quality benchmarks using recent SOTA models to understand what good performance

looks like. For the benchmarking work we use a modified fork of the Open-NMT

(PyTorch version) library1 (Klein et al., 2017). We explore two models to establish

benchmarks including an ”Vanilla” Encoder-Decoder with global Attention (VEDA),

and a Pointer-Generator Network (PGN) with coverage attention. These are discussed

in more detail below.

In order to have greater control over the modelling pipeline we also wrote our

own implementation for end-to-end sequence-to-sequence models in PyTorch (Paszke

et al., 2017). This included scripts for importing and structuring data and vocabu-

laries, importing and loading word embeddings, setting up data iterators and batching,

replicating the Encoder-Decoder with attention model2, methods for evaluating the dif-

ferent tasks, methods for plotting attention visualisations and methods for computing

ROUGE metric (using Tardy (2017)). We extended this model to work for predicting

tag sequences and for MTL to update the model using a compound loss function. We

also implement a model that is capable of taking the latent representations from the en-

coder and train on top of this a classifier for predicting global document semantics as a

way of probing the quality of latent representations. Finally, we train a further model to

predict the global semantic classes from an encoder trained on this task specifically, to

1The original library can be found at https://github.com/OpenNMT/OpenNMT-py whilst our fork
is publicly available at https://github.com/jtizzle36/OpenNMT-py.

2Code available at https://github.com/jtizzle36/diss_remote_code_seq2seq. Inspiration
was taken from a tutorial by Lo (2018)
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establish a ceiling value for the task to compare our model to. We also write methods

for transforming, visualising and analysing latent representations using Uniform Man-

ifold Approximation and Projection (UMAP, McInnes and Healy (2018)) a dimension

reduction technique.

All code was written in Python and all modelling work was done using the PyTorch

library (Paszke et al., 2017) and computed using a single Nvidia GeForce GTX Titan

X.

In the following sections we give more details on the methods and work done for

different components of our research.

4.2 High quality benchmarks

Since we are introducing a novel dataset for text summarization it is necessary to create

high quality benchmarks to better understand the task and what good performance

looks like. We create a simple extractive baseline using the LEAD method, where

the leading sentences of a document are assumed to form a good summary. Since the

majority of our target summarizations are two sentences long we select the first two

sentences from each document as the LEAD baseline.

4.2.1 Evaluation

Evaluation methods for natural language generation are still somewhat limited and

automated methods still fall short of high quality, comprehensive evaluation for flu-

ent and coherent language and differ significantly from human evaluations (Novikova

et al., 2017). In an ideal world we would have used human evaluators in addition

to automated metrics, however this was out of scope for the present research due to

resource constraints. As such we rely primarily on the automated metric known as

ROUGE, which stands for Recall-Oriented Understudy for Gisting Evaluation (Tardy,

2017). It is somewhat related to the BLEU metric (Papineni et al., 2002) used in ma-

chine translation except it is recall-oriented whilst BLEU is precision-oriented. That

is, BLEU is concerned with measuring how much the words (or n-grams) in the gen-

erated summaries appeared in the reference, whilst ROUGE is concerned with the

inverse, how much the words in the reference appeared in the generated summary. As

such, BLEU will penalise words or strings in the generation not found in the refer-

ence, whilst ROUGE is less concerned with these novelties but more concerned with
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ensuring the words from the reference appear in the generation at some point. Since

we expect a natural language generation system to improvise (indeed, we may hope

to see this behaviour) ROUGE is typically considered a more appropriate metric for

abstractive summarization. We report both ROUGE and BLEU for unigrams, bigrams

and the longest n-gram matching sequence. ROUGE-N is described in general as

R�N =

Â
S2(Re f Summs)

Â
gramn2S

Countmatch(gramn)

Â
S2(Re f Summs)

Â
gramn2S

Count(gramn)
(4.1)

We also calculate a metric for novel bigrams. Since the objective of abstractive

summarization is to generate summaries without just copying source information as in

extractive approaches we also measure the number of n-grams seen in the generated

summary that do not appear in the source text. This computes bigrams and trigrams

and calculates the proportion of novel bigrams not found in the source text to total

bigrams in the generated sequence.

4.3 Language Class & Vocabulary Building

In order to train our sequence-to-sequence models appropriately we create classes for

the different tasks that treat our data appropriately. Source texts are truncated to 400

tokens in length (tokens include words, punctuation and numerals), reference texts (i.e.

the target summaries) are truncated to 100 tokens. All sequences are bookended with

a beginning of sequence token (’hBOSi’) and and end of sequence token (’hEOSi’). A

vocabulary is created by selecting the 50,000 most prevalent tokens in the source and

target sequences, which gives a total vocabulary size of 50,004 including the positional

tokens we added. We use a shared vocabulary for the encoder and decoder. Tokens not

found in the vocabulary are replaced with an unknown token (’hUNKi’). Sequences

that are less than 400 tokens are padded with a pad token (’hPADi’).

4.4 Word Embeddings

Each token from the input sequences is associated to a vector w 2 Rd via a lookup

table. We used GloVe pre-trained word embeddings with a size of 300 dimensions

trained on a 6B token corpus comprised of Wikipedia 2014 and Gigaword 5 datasets

(Pennington et al., 2014). Of our vocabulary of 50,004 tokens, 4505 words do not have



28 Chapter 4. Methods

embeddings in the GloVe model. These are converted to unknown tokens resulting in

a final vocabulary size of 45,499 words.

All tokens from an input string are mapped to their respective embedding in the

first layer of our model. In theory, we could also pre-translate our input and output

token sequences to their embeddings, however by including the embeddings as a layer

in the model it allows us to backpropagate errors through the embedding layer, which

allows us to also modify the embedding vector values to further minimize the loss

function. This is known as fine-tuning the embeddings. We fine tune our embeddings

allowing the embeddings to move to updated distributions that better reflect their us-

age in our specific corpus and has been shown to improve performance (Howard and

Ruder, 2018). We tested whether using pre-trained embeddings improved quality of

summarization and found it improved validation accuracy during training by around

5%. We did not test the effect of fine-tuning embeddings.

4.5 Encoder-Decoder Model

Our core model is the same as the general attention model described in Luong et al.

(2013). The sequence transduction task in its general form models the probability

p(y1, ...,yn|x1, ...,xm), mapping to the output sequence y1, ...,yn from the given input

sequence x1, ...,xm. The model itself involves several components described below

and shown in figure 4.1. At a high level, the model takes in a sequence of source

embeddings,x(Emb.)
1 , ...,x(Emb.)

m , passes these through the encoder RNN for m timesteps,

where m is the token length of the input sequence and takes the output states of the last

layer of the encoder, h1, ...,hm, and stores these for later. It then passes the sequence

of target embeddings, y(Emb.)
1 , ...,y(Emb.)

n , through the decoder RNN one at a time for

n timesteps, at each step it combines the output of the decoder sn with the preserved

encoder states h1, ...,hm based on the learned context vector c which allows the decoder

to selectively attend to the encoder states uniquely at each timestep n. The output of

the attention layer is then passed through a softmax w.r.t. the vocabulary resulting in

probabilities for all token embeddings in the vocabulary.

For all trained models (unless otherwise specified) we use a two layer, bidirectional

LSTM as the encoder with a hidden size of 512 units, that is, each LSTM is 256 units

so a single bidirectional layer is 512 when concatenated. We use a single directional

single layer LSTM decoder. We use dropout at the input to RNN layers with a proba-

bility of 0.3. We use shared embeddings for the encoder and decoder (explained later
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Figure 4.1: Diagram of the Encoder-Decoder with attention model. From Britz et al.

(2017).

in this section) and use beam search for our benchmark experiments (also discussed

later this section). These hyper-parameters were chosen using a combination of re-

viewing the literature (particularly Britz et al. (2017)) and by preliminary experiments

evaluating performance-resource trade-offs.

4.5.1 Encoder

The encoder takes the form of a stacked 2 layer bidirectional RNN, as described in

chapter 4. A bidirectional RNN effectively duplicates the input and reverses it, start-

ing with the last token and ending with the first. This has been shown to dramatically

improve performance in machine translation (Sundermeyer et al., 2014). The two rep-

resentations are then concatenated before being passed to the next layer.

So the encoder function fenc takes the sequence of embeddings x = x1, ...,xm (we

refer to these as just x rather than x(Emb.) for readability, from here onwards) and pro-

duces a sequence of hidden states h = h1, ...,hm, where hi is the concatenation of the

hidden state in both directions hi = [
�!
hi ;
 �
hi ].

4.5.2 Decoder

The decoder function fdec is a single directional RNN that predicts the probability

of a target sequence y = y1, ...,yn based on h. The probability of each target token
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yn 2 1, ...,V is predicted via a softmax over V states based on the recurrent state of

the decoder RNN sn, the tokens already generated, y<n, and the context vector cn, also

known as the attention vector. A simple decoder process is as follows

sn = LST M(hi,yn�1) (4.2)

ln = g(sn) (4.3)

pn = so f tmax(ln) (4.4)

yn = argmax(pn) (4.5)

If n is the first output in a given sequence and yn�1 = ? then we set yn�1 to the

beginning of sequence token 0hBOSi0. hi 2 h is some method for selecting from the

encoder states such as taking the last state or an average over all states, later we intro-

duce attention for this. g is a function to map the decoder outputs to an vector the same

shape as the vocabulary, g : Rs 7! RV so that ln := g(sn) 2 Rv. The so f tmax function

normalizes this to a vector of probabilities over the vocabulary and (in a greedy de-

coder) we take the argmax of the probabilities to find the next most likely token (later

we introduce beam search for more long-sighted sequence prediction). Decoding stops

when the predicted word is an end of sentence token 0hEOSi0 (or we reach a maximum

out put length set by a parameter).

4.5.3 Attention

The attention vector is calculated as a weighted average of the source states h. This

modifies equation 4.2 above as follows

sn = LST M(sn�1, [yn�1,cn]) (4.6)

cn = Â
j

an jh j (4.7)

an j =
ân j

Â j ân j
(4.8)
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ân j = sT
n�1Wh j (4.9)

where cn is the context vector, an j are the attention weights, and ân j are the raw

attention scores. W is a learned weight matrix which transforms the decoder state to a

new shape to match the encoder state and serves to optimize the attention mechanism.

The form of ân j varies in different implementations of attention, we use the general

form from Luong et al. (2015a).

4.5.4 Shared Embeddings

We also use shared and tied embeddings where appropriate. Tied embeddings are

where the input and output embeddings for the decoder are set to be the same, these

are used for all models. Shared embeddings are where the encoder and decoder have

a common vocabulary and are initialized with the same embeddings. This is used for

summarization models. These methods reduce the number of parameters that need to

be learned and leads to better training dynamics and improved performance (Inan et al.,

2016; Press and Wolf, 2016).

4.6 Training and Optimization

To train the model we calculate the loss for each sequence. The decoder outputs vec-

tors of probability over the vocabulary pi 2 RV for each timestep. For a given target

sequence y1, ...,yn we calculate it’s probability as the product of the individual proba-

bilities of each token at each respective timestep

P(y1, ...,yn) =
n

’
i=1

pi[yi] (4.10)

where pi[yi] means we select the yith entry from the probability vector pi from the

ith decoding step. During training we know the true sequence so we can maximize the

probability of this using the reference sequence by minimizing the cross entropy loss

between the target and predicted distributions

� logP(y1, ...,yn) =� log
n

’
i=1

pi[yi]

=�
n

Â
i=1

log pi[yi]

(4.11)
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Updating the parameters of the model is done by backpropagation of gradients w.r.t

the errors using PyTorch’s automatic differentiation module. This updates weights and

biases based on our optimization algorithm. We use a dynamic learning rate calculated

by Adam. We initialize the learning rate at 1e� 3. We considered other optimization

algorithms including stochastic gradient descent and RMSProp but found Adam to be

stable and to give favourable training dynamics.

We used a batch size of 16 (due to memory constraints on the GPU) and trained

models until convergence. Initially we trained for 190k steps to find a good stopping

criterion and identified 140k steps as the ideal point for out benchmark experiments

(equivalent to just under 12 epochs). Other experiments were trained for variable steps

as specified in the results.

4.6.1 Evaluating the Auxiliary Sequence Task

Since we are predicting a sequence of labels it does not make sense to use ROUGE

or sequence generation type metrics. Instead we calculate the precision, recall and F1

statistic as if we were predicting multiple classes.

4.6.2 Beam Search

In out benchmark experiments we use beam search decoding for the Open-NMT trained

Pointer-Generator Network models, with number of beams, k = 5 (for other experi-

ments we use a greedy decoder). Beam search lifts the greedy assumption that the

best sequence is the sequence that maximizes the probability at time n, such that

yn = argmaxp(yn|y<n,x1, ...,xm), and accepts that there may be better sequences that

have a non-maximal probability at time n but have a higher overall sequence probabil-

ity when considering p(y1, ...,yn|x1, ...,xm).

In order to accommodate these alternative non-greedy hypotheses we keep track

of k candidate sequences (k is the beam size). At each new timestep we have 5V

possible hypotheses, of which we keep the best 5 based on their probability, and so

on. Once every hypothesis terminates we return the sequence with the highest overall

probability.
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4.7 Multitask Learning

Our MTL experiments test whether training the summarization model with MTL on

a semantically related sequence prediction task leads to (a) an improvement in the

summaries as measured by traditional metrics and (b) greater semantic information in

the latent representations as measured by the semantic class reconstruction side task.

Figure 4.2: Diagram of the multitask Encoder-dual-Decoder with attention model. Inter-

nal workings are the same is in figure 4.1.

The auxiliary semantic sequence prediction task is to predict the topic tags associ-

ated with each document. These topic tags reflect lower level semantic concepts when

compared to the article classes, for instance entities such as people or places. We train

a single task model on the topic sequence prediction task using the same model and

hyper parameters as for the summarization task to give a single task baseline.

To train the MTL model we amend the architecture above to have a second de-

coder which also takes the same encoder states as inputs. This decoder is identical

to the one described and has it’s own attention layer. We optimize the model using a

compound loss function. This is done by simply calculating the loss for both tasks,

losssumm, losstags, summing these together and backpropagating the compound loss.

We also implement a weighted compound loss function using a weight parameter a
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such that the new loss is defined by

loss = a · losssumm +(1�a)losstags (4.12)

4.8 Measuring Global Semantics in Latent Space

We create a side task using TL with the trained encoder representations of our sequence

transduction models to classify source article semantic class. This task is designed to

probe the latent representations learned by the sequence transduction models. Each

article is from a global semantic class, that is, the document relates to an abstract

subject such as ”politics”, ”sport” or ”culture” (11 classes in total, see chapter 3).

We test whether the semantic class is recoverable from the learned representations as

a measure of semantic information retention from the source text. If one model is

better able to recover these classes then we can infer that the representations are of

higher quality with respect to capturing abstract semantic regularities from the source

documents.

In order to establish an upper bound for this task we must first train a model specif-

ically to perform this task. To this end we train a new model with a similar encoder to

our summarization model. This model then passes the last state of the encoder repre-

sentations through to a single hidden layer with the same number of outputs as there

are semantic classes. We pass this through a softmax to get probabilities for each class

given the encoder states and we train this model using the cross entropy loss between

the predicted and true class for each document.

We then create a model for our task, which is equivalent to the model just described

except it receives fixed-weight outputs from the fully trained summarization encoder.

In other words, we only update the weights for the class prediction layer when training

this model. This allows us to estimate how good a model is at recovering the document

semantic classes from their latent representations learned by the encoder, relative to a

task-specific encoder (which should achieve an optimal performance given the input

information). In this way we can compare different summarization models based on the

quality of their latent representations in addition to traditional metrics such as ROUGE.

We train this model using a cross entropy loss function over the class prediction.
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Figure 4.3: Diagram of the semantic classification side task.





Chapter 5

Results & Discussion

5.1 Abstractive Summarization Task Experiments

5.1.1 High Quality Benchmarks

Since our work makes use of a novel dataset it is important to establish high quality

benchmarks. In order to do this we trained several recently SOTA models using Open-

NMT (pytorch version) (Klein et al., 2017). We create a simple, rule-based, extractive

baseline by taking the first two sentences1 from each article body, referred to as the

LEAD summary, see figure 5.1 for an example. Figures 5.2 and 5.3 show an example

of a (matching) article body text, which is the input to our model, and a reference

summary, which is the target output for our summarization models, respectively.

”the killing of about 00 people in southern yemen has highlighted an ongoing us backed

campaign against al qaidas most active frontline . reports from sanaa and washington

confirmed the deaths in air raids and drone strikes against targets in shabwa and abyan

provinces , a stronghold of al qaida in the arabian peninsula .”

Figure 5.1: An example LEAD summary.

We train several baseline models using the Open-NMT pytorch library (Klein et al.,

2017) all to 140k training steps (with a batch size of 16): a ”Vanilla” Encoder-Decoder

with general attention model (VEDA-onmt, as described in detail in chaper 4, a Pointer-

Generator Network with coverage attention, PGN, without pre-trained word embed-

dings, and a PGN with pre-trained GloVe embeddings. We also train our own im-

1using the sentence tokenizer from the NLTK package.
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”the killing of about 00 people in southern yemen has highlighted an ongoing us backed

campaign against al qaidas most active frontline . reports from sanaa and washing-

ton confirmed the deaths in air raids and drone strikes against targets in shabwa and

abyan provinces , a stronghold of al qaida in the arabian peninsula . apparent re-

taliation followed swiftly , with four yemeni security officers gunned down in the last

00 hours . the aerial attacks described by one experienced observer as massive and

unprecedented started on saturday and ended late on monday . the yemeni government

said on tuesday night it was investigating whether one of the dead was ibrahim al asiri

, a master bombmaker believed to have been involved in several high profile terrorist

plots against western targets , cnn reported from sanaa . the death total of 00 was

announced by yemens interior ministry ....”[truncated]

Figure 5.2: An example article body text.

”yemen conflict highlighted after 00 killed in air raids and drone strikes . campaign

against al qaida in the spotlight , as yemeni govt investigates whether prominent bomb-

maker is among the dead .”

Figure 5.3: An example reference summary.

”yemen, middle east and north africa, al qaida, drones”

Figure 5.4: An example topic tag sequence.

plementation of the VEDA-summ model to 85k steps (training truncated due to long

training time and resource limitations).

For reporting result we use an identical subset of 3000 randomly selected examples

from our test set (a subset is used since the generation process is time consuming and

we consider 3000 to be a sufficient sample for statistical analysis). We measure the

performance of these models using the ROUGE metrics, R-1, R-2, and R-L, which

reflect, as described in chapter 4, recall of unigram, bigram and longest matching n-

gram. We report BLEU metrics, B-1, B-2, and B-L, which reflect the precision of

unigrams, bigrams and longest matching n-gram. We report the F1 score, the harmonic

average, of ROUGE and BLEU. We also report the mean number of novel bigrams

found in the generated text string relative to the source text. This will be low if the

model is learning to copy sequences from the source text, however a high score is not

necessarily good, since it may reflect gibberish that is novel but also nonsensical. In
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the context of a high rouge score, a relatively high novel n-gram score might imply

that the generated text is also innovative.

Novel

model F1-1 B-1 R-1 F1-2 B-2 R-2 F1-L B-L R-L bigrams (%)

REF - - - - - - - - - 63.62

LEAD 30.69 25.79 41.36 11.07 8.90 16.25 23.32 22.17 35.62 0.0

VEDA-onmt 28.09 32.17 25.91 6.95 7.45 6.76 24.41 29.33 23.63 74.71
PGN wo emb. 33.93 33.45 35.71 11.44 11.16 12.19 29.50 29.98 32.07 26.29

PGN 34.34 34.02 35.94 11.82 11.60 12.51 29.87 30.48 32.28 29.20

VEDA-summ 29.75 36.72 26.60 8.37 9.62 7.86 25.00 33.42 24.14 49.12

Table 5.1: Results for baseline models measured by ROUGE (R-1, R-2, R-L), BLEU,

(B-1, B-2, B-L), F1 statistic (harmonic mean of ROUGE and BLEU), and novel bigrams

(%). 1, 2 and L refer to unigram, bigram and longest n-gram, respectively. We include

the reference (REF) to show novel bigrams, LEAD extractive baseline, Vanilla attention

model, VEDA-onmt, Pointer-Generator networks (PGN; with and without embeddings)

and our implementation of the vanilla attention model, VEDA-summ. Best scores are in

bold.

Table 5.1 shows results of the benchmark models. We can see that the reference

summaries are clearly not extractive with 63.6% of bigrams being novel and therefore

not observed in the source text. The simple LEAD baseline of extracting the first two

sentences performs quite well and has best overall performance as measured by the

ROUGE metrics, however these summaries are long (mean avg. 62.16 tokens), al-

most twice the average length of the reference summaries (mean avg. 35.58 tokens),

and have zero novel bigrams since they are (by design) entirely extractive. The F1

score can be considered a good summary statistic of the two if we consider these as-

pects equally important. Although both of these metrics are important for abstractive

summarization, typically ROUGE is considered the most important of the two. The

best performing model according to the F1 statistic is the PGN with pre-trained GloVe

word embeddings. Although worse than the LEAD baseline by ROUGE metrics, it is

considerably better on BLEU, meaning that it is better at excluding irrelevant tokens

but less good at including all tokens from the reference. It is clear that including pre-

trained word embeddings is beneficial to performance, in the PG model it gives modest

gains of 1� 3% across all metrics. The VEDA model trained with the Open-NMT
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library performs adequately overall, although it scores noticeably worse on recall met-

rics when compared LEAD and our best performing model. It does score highest on

the novel bigrams metric, however this may be due to the generation of non-adequate

or non-fluent strings.

Our hypothesis was that high quality benchmarks could be trained for this novel

dataset. The main dataset in use as a benchmark for abstractive summarization is the

CNN / Daily Mail as presented by Nallapati et al. (2016). Recent SOTA scores on

this dataset as measured by the ROUGE-1 metric range from 35.46 to 41.20 with the

Pointer-Generator with coverage model scoring 39.53. On the novel Guardian news

dataset presented here, PGN scores 35.94 without significant hyper-parameter search

and tuning. We conclude that this dataset appears to be a good candidate for abstrac-

tive summarization, furthermore we believe that this dataset presents an interesting

challenge due to the high proportion of novel bigrams contained in the reference sum-

maries. Perhaps a weakness of the dataset is that the LEAD baseline scores the highest

ROUGE scores, suggesting that models that can learn to extract, either explicitly as

in extractive methods or implicitly as a learned strategy, from the first two sentences

alone will do well on this task. Perhaps it is interesting that the PGN does not learn

this strategy. We suggest this may be due to the loss function providing a different ob-

jective to the ROUGE score. We discuss the contribution of the loss function in more

detail later in this section.

5.1.2 Our model

Our implementation of the VEDA model, VEDA-summ, outperforms the Open-NMT

model, VEDA-onmt, across all ROUGE metrics, has best in class scores for BLEU and

shows moderately high novel bigrams, significantly more than the PGNs but fewer that

the VEDA-onmt model and the reference. Overall we take this as a good indication that

our implementation is sufficient, and whilst not as good as SOTA systems, it forms a

good baseline for our further experiments with alternative tasks and multitask learning

(MTL).

Figure 5.5 shows a plot of attention weights at each decoder step over the source

text (cropped due to size constraints, full figure available in the digital appendix). The

attention mechanism can be seen functioning as a monotonic copy function across the

bright diagonal of the figure. Other parts of the figure show word substitutions, such

as britain! uk at the second output.
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Model Text

REF ”london night tube : meet the people who travelled on the first night . a few hours

on the victoria line s new night service yield music , laughter , selfies , mice and an

encounter with london mayor sadiq khan .”

LEAD ”it was the night that london s underground finally became a 00-hour service , or ,

as one driver put it in an announcement : it s 0am and you lot are still on the tube

. the victoria and central lines are the first two underground lines launching a night

service .”

VEDA-onmt ”london night : london s night bus . the london night is a night of the night , but the

london s night of the london night , the london s night , the london s night tube is a

f**king departure .”

PGN wo emb. ”london 0000 : victoria and central lines are first two underground lines . london

s underground finally became a 00-hour service , or , as one driver put it in an

announcement : it s 0am and you lot are still on the tube .”

PGN ”london night tube : what the experts say . the victoria and central lines are ex-

pected to follow suit before the year is out . it s a momentous occasion for all of us

londoners .”

VEDA-summ ”london tube strike : what we learned this week . from the tube to london to london

0000 , here are five things we learned from the weekend s tube network .”

Table 5.2: Reference and generated summaries for a random test example (profanity

filtered). Source text in the Appendix (table A.1).

5.1.3 Qualitative Analysis of Generated Summaries

Table 5.2 shows the reference summary and generated summaries for our baseline

models given a randomly selected source text. This example highlights the complex-

ity of the task, the reference includes a complex construction involving a topic, the

London night tube, followed by a colon and a subtopic, meeting people traveling on

the first night. The second sentence references various concepts that are discussed
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Figure 5.5: Attention weights for each decoder step over source text (crop from full

figure). Generated output is on the top, source text on the left.

throughout the whole article. We can see that the LEAD summary does refer to the

main subject of the night tube (or at least the 24 hour service) and it identifies the time

frame scope, that it was the first night, however it does not do a good job of capturing

the context from the second summary or the subtopic of meeting the riders. It contains

quite a lot of redundant information and highly specific details not normally found in

a summary. We can see from the model-generated summaries that, despite compara-

ble ROUGE scores to the LEAD summary, some of them are very poor summaries in

terms of adequacy and most contain disfluencies in parts, or across the whole summary.

In particular, the VEDA-onmt model is particularly poor; it captures the ’topic-colon’

structure but suffers from repetition of the main subject and refers to a night bus rather

than the tube, presumably due to the language model favouring this sequence, since

”night tube” is a less frequent bigram in the training data. The next sentence is not

fluent due to significant confusion of appropriate subject-object relations, such as ”the
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london night is a night of the night”; arguably the syntax is valid but the sentence is

essentially nonsense. Interestingly it copies a profanity from the source text, which is

likely to be a rare work in this corpus, and almost certainly does not appear in any ref-

erence summaries. It is likely to be a result of the mechanism that copies the work with

highest attention when the generative model produces an unknown token. It remains

unclear as to what factors lead to attention being focused on one word over another.

The PGNs are a significant improvement over the VEDA-onmt model and are, for the

most part, fluent summaries. The PGN with pre-trained embeddings, in particular,

accurately captures the ’topic-colon-subtopic’ structure, although the subtopic is only

partially accurate; it identifies that it is a groups’ opinions, however it incorrectly refers

to the group as experts. This may be an overgeneralisation due to the corpus including

many expert reports. The second sentence is fluent but factually incorrect as it sub-

stitutes the line names, mixing up the currently active night lines for future planned

night lines. In the last sentence it actually does a good job of capturing the gist of

the reference without the details. The PGN model without embeddings does a reason-

able job although it inaccurately identifies the main topic as ”london 0000”, which is

probably an over-generalization due to the large number or articles about the London

Olympics. Both the location and time period are important in the article however it

misses the main subject of the night tube, leading to the false implication of an entirely

new underground. In the next sentence it does correctly refer to the 00-hour service

(not 24, due to preprocessing) but ends with a flippant quote, unsuitable for a good

summary. The summary from our model identifies the main topic as the ”london tube

strike”, which is incorrect and likely due to over-fitting / under-regularization, and the

subtopic of ”what we learned this week”, which is somewhat appropriate. The second

sentence is fluent and makes references to the tube and new things we have learned but

is not an adequate summary of the article.

Table 5.3 shows summaries generated for the source text our vanilla model per-

formed best on according the the ROUGE-1 and ROUGE-2 F1 statistics. Inspecting

this example it is clearly quite easy, with the second sentence of the reference being en-

tirely extractive (as seen in the LEAD summary first sentence) whilst the first sentence

can be formed entirely with just deletion operations on the second sentence. It is sur-

prising the PGNs do not perform better on this example, the PGN with pre-trained

word embeddings in particular performs poorly. Our assumption was that models

would tend to do well or poorly on the same examples so we are surprised by this

example. In order to investigate this further we analyse correlations of ROUGE scores
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across the different models.

Model Text

REF ”crystal palace set to break club record fee to sign james mcarthur for 0m . crystal

palace are set to break their club record fee to sign the wigan midfielder james

mcarthur for 0m .”

LEAD ”crystal palace are set to break their club record fee to sign the wigan midfielder

james mcarthur for 0m . mcarthur s transfer would surpass the former club record

fee paid to peterborough last summer for dwight gayle , and would cost palace the

same figure wigan agreed with leicester city before they opted instead to secure

esteban cambiasso on a 00-month deal .”

VEDA-onmt ”crystal palace to sign wigan athletic for 0m fee for 0m . crystal palace are set to

make their 00m signing of wigan midfielder wilfried zaha for 0m to sign a 00m fee

for 0m .”

PG wo emb. ”crystal palace set to break record fee to sign james mcarthur for 0m . mcarthur s

transfer would surpass the former club record fee paid to peterborough last summer

for dwight gayle , and would cost palace the same figure wigan agreed with leicester

city before they opted instead to secure esteban cambiasso on a 00-month deal .”

PG ”football transfer rumours : crystal palace to break james mcarthur on record fee

? adl ne guedioura to wigan ? — glenn murray to wigan ? — neil warnock to

nottingham forest ?”

VEDA-summ ”crystal palace set to break record fee for 0m . crystal palace are set to break their

club record fee to sign the wigan midfielder james mcarthur for 0m .”

Table 5.3: Reference and generated summaries for the best summary generated by our

model as measured by ROUGE-2 F1 statistic (0.913). Source text in the Appendix.
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Figure 5.6: ROUGE-1 F1 scores for the PGN (y axis) and VEDA-summ model (x axis).

The plot shows a significant moderate correlation (0.51, r=0.49).

5.1.4 Analysis of ROUGE

Figure 5.6 shows a regression model fit to the ROUGE-1 scores for the PGN and the

VEDA-summ model, revealing a moderate correlation (0.51, r=0.49) between the two

scores. This somewhat confirms our assumptions that, in general, the two models

produce similar ROUGE scores for the same source texts, however it is not a strong

correlation and it is clear from the distribution that there are a number of outliers that

may score very high with one model and very poorly with the other. This suggests that,

despite relatively similar architectures, there are significant performance differences

due to the novelties across the models. It is not the case that one model simply does a

bit better across all examples, it seems that one model might completely fail for a given

example whilst the other model can perform well on that same example. Figure 5.7

shows a pair plot with regressions for ROUGE-1 comparisons for all models. We can

see that, as we might expect the two PGN models have a particularly strong relationship
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whilst LEAD has a particularly weak association with all other models; but strongest

with the PGN, which makes intuitive sense since these modules also include extractive

functions. It is clear from this figure that there is a great deal of variation across

the models and there is not strong agreement across most of them. This is useful

information, for instance it tells us that in many cases poor performance is not simply

down to difficult examples that are hard for all models, but may be down to an incorrect

summarization function for a given model.

Figure 5.7: ROUGE-1 scores for all model pairs.
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5.1.5 ROUGE by section

Whilst inspecting top ROUGE results we noticed that many of the best scoring samples

were from the same two sections: football and sports. To investigate this further we

calculated ROUGE-1 scores for each section across different models, shown in table

5.4. By computing z-scores we can inspect whether the patterns are consistent across

the different models. Firstly we notice that there appears to be a relationship between

the trained models, VEDA-summ and PGN, and the class imbalance shown in figure

3.6. We suspect that the model is biased toward accurate summarization of the more

prevalent class. This would fit with the mechanism by how we update our weights.

This could be addressed using a weighted loss function that penalizes errors based on

additional information such as the newspaper section and training sample prevalence.

We also notice that the LEAD method reveals biases that cannot be due to training

dynamics. This highest scoring sections for the LEAD method are UK news, World

news and business sections which have close to mean performance in the trained mod-

els. It is likely this is due to structural regularities in the data; these sections are ”canon-

ical” news and are perhaps more likely to have a simple message that is included in

both the summary and the leading sentences of the article. Sections that perform worst

with the LEAD method, travel and fashion, also perform worst on the trained mod-

els. These sections reflect less cannonical news articles. It was beyond the scope of

our research to investigate this further however, inspecting the performance of sum-

marization by categories like this might reveal interesting factors dictating generation

quality.

Our hypothesis was that we would be able to train a high quality model using

our own code that would perform equivalently to the baseline models trained with the

Open-NMT library. Although our VEDA-summ model does not perform as well as

the PGN it outperforms the equivalent VEDA-onmt Open-NMT model. We also show

that, contra to expectations, models do not always generate low quality summaries on

the same source texts. This suggests that poor performance is not driven by exogenous

sources of difficulty (i.e. the source is just hard to model) but endogenous sources of

variation in how the models generate summaries.
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Section VEDA-summ z-score PGN z-score LEAD z-score

business 25.36 0.25 36.79 0.61 45.32 0.83

culture 21.38 -0.64 35.03 0.15 31.06 -0.87

environment 24.00 -0.05 34.14 -0.08 37.47 -0.11

fashion 17.22 -1.56 30.55 -1.01 24.79 -1.62

football 33.20 2.00 38.32 1.00 41.19 0.34

politics 26.99 0.62 36.64 0.57 44.28 0.70

sport 27.28 0.68 35.65 0.31 39.27 0.11

technology 22.58 -0.37 33.87 -0.15 37.02 -0.16

travel 18.00 -1.39 24.68 -2.51 25.15 -1.57

UK news 26.07 0.41 37.68 0.84 49.68 1.35

world news 24.48 0.06 35.51 0.28 46.84 1.01

Table 5.4: ROUGE-1 by newspaper section and z-scores for each model. There are

clear differences across sections and these differ by LEAD versus trained models.

5.2 Topic Tag Sequence Generation Experiments

We train the VEDA model, as above, on the topic tag sequence generation task, us-

ing our implimentation, VEDA-tag, and Open-NMT, VEDA-onmt-tag, to see if this

model architecture is capable of learning other non language-like sequences. We do

not replicate the PGN model since this makes no sense for this task. We measure per-

formance using precision, recall and the F1 statistic over predicted sequences. Due

to resource constraints we were unable to train our model (which takes significantly

longer per step) for the full 140k steps we trained the baseline models for. To account

for this we also report results for the Open-NMT model at equivalent training steps.

Table 5.5 contains the results; although our model, VEDA-tag, does not achieve the

same performance as the fully trained Open-NMT model it does perform significantly

better than the Open-NMT model trained to equivalent steps (15k with a batch size

of 16). The models perform well in terms of precision, the best score being 75.91,

but fall short on the recall metric, only achieving a best score of 51.90. We suspect

this is due to the model failing to generate rare tags. As discussed in chapter 3 the

tag distribution is extremely long tailed, as such the probabilities for rare tokens are

going to be very low. We perform an analysis to check this hypothesis by calculating

the average prevalence of tags found in the predicted tags vocabulary versus tags not
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found in the predicted tags vocabulary. We find that the tags that are predicted have

a median prevalence (count of occurrences over total tags) of 2.28e� 04 whilst the

median prevalence of tags not found in the predicted vocabulary is 4.37e� 06. We

report the median rather than the mean values due to the non-normal distribution of

the data, however the mean values show the same relationship but with more extreme

values. This same issue is seen with language modelling as well and there are methods

to try to resolve it. We could subsample the documents (or over-sample) to artificially

alter the frequency statistics. This could lead to improved tag predictions but may also

lead to false positives. Alternatively we could use a back-off method for all rare labels

during decoding to increase the likelihood that they are generated. We do not explore

these improvements further since the objective of this task was not to create particularly

accurate topic tag predictions but to develop this task to be used as an auxiliary task

during multitask training for text summarization. We have demonstrated that the mod-

elling approach works well enough for our further experiments. We were somewhat

surprised that this did work quite well as we expected more issues with repetition and

with the fact that the reference tags do not have a strict sequential nature like natural

language. In fact the model appears to learn that tags are not repeated.

model F1 precision recall

VEDA-onmt-tag 140k 58.73 75.91 51.90
VEDA-onmt-tag 15k 16.94 0.2263 14.80

VEDA-tag 15k 42.49 66.65 34.77

Table 5.5: F1 statistic, precision and recall for predicted tag sequences (we report as a

%).

Figure 5.8 shows a crop of the the attention weights at each decoder step (cropped

due to size constraints2). Interestingly we do not see expected patterns for attention

mappings between source words and decoded tags, for instance in the plot we observe

strong attention between source word ”overwhelm” and the tag ’eu referendum and brexit’

but very little attention over ”britain s exit from the european union”. This is fairly con-

sistent across examples. Speculatively, this could be due to overfitting due to either our

training dataset being too small or poor regularization of the network during training.

If the training data are to small then certain words might happen to be highly associated
2full scale plots are included in a digital appendix
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Model Text

LEAD summary ”managing britain s exit from the european union is such a formidable and

complex challenge that it could overwhelm politicians and civil servants for

years , senior academics have warned . theresa may has announced she will

trigger article 00 the two year process of negotiating a separation from the eu

by the end of march next year .”

REF ”eu referendum and brexit, european union, foreign policy, politics,

uk news, academic experts, business, europe, world news”

VEDA-onmt-tag

140k

”eu referendum and brexit, european union, europe, foreign policy, politics,

uk news, world news”

VEDA-onmt-tag

15k

”olympic games 0000, sport, olympic games”

VEDA-tag 15k ”eu referendum and brexit, uk news, european union, foreign policy, poli-

tics”

Table 5.6: LEAD summary (for context) and generated topic tag sequences from a

randomly selected test set source text. The 15k VEDA-onmt-tag model was predicting

tags about the wrong topic entirely. On further inspection this is consistent across

examples and appears to be due to over-generalization at early stages of training.

with a document topic, for instance ”overwhelm” and ’eu referendum and brexit’. In a

larger corpus we would observe the word ”overwhelm” in more contexts, which would

help regularize this type of overfitting. We do implement dropout (p = 0.3) on the

source texts and on the outputs of our RNN layers which should address this single

source word overfitting however due to the relatively short training scheme used on

these models (3 epochs) it is possible that this dropout is not having a strong enough

effect. There are other variants of dropout that have been shown to be highly effec-

tive for RNNs, such as Variational dropout (Gal and Ghahramani, 2016) or Zoneout

(Krueger et al., 2016), which would likely improve performance here. Implementing

these was sadly beyond the scope of the present research.

Our hypothesis for the TTSG task was that the same model architecture used for
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Figure 5.8: Attention weights for each decoder step over source text (crop from full

figure). Generated output is on the top, source text on the left.

generating text summaries could also be used to model sequences of topic tags. We

have not found reference in the literature to such a task so we consider this to be an

example of a novel application of the encoder-decoder model for sequence generation.

As such we do not have a benchmark to compare our findings to, however the results

suggest that our model is able to perform this task reasonably well within the context
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of the extreme distribution of the topic tags. Qualitative inspection of the example

outputs show that our model is learning appropriate topic tags and should be suitable

as an auxiliary task in the MTL experiments we intend.

5.3 Multitask Sequence Generation Experiments

We trained several MTL models due to unsatisfactory outputs (see figure 5.9 for ex-

amples and tables 5.7 and 5.8 for results), however none produced fluent, adequate

or accurate results for either task. We discuss what we tried to improve these models

and candidate causes. Given the results for the two single tasks in isolation we were

hopeful that the MTL models may perform well. Our baseline model was similar to

the model architecture used for the single tasks but with two decoders run in parallel as

described in chapter 4 and figure 4.2. The model outputs were inadequate, producing

highly repetitive sequences, often with a single token repeated for several or all de-

coder timesteps. Initially we thought this might be due to a resource bottleneck in the

model and competing objectives between the two tasks. In order to improve the quality

of the summaries we implemented a weighted compound loss function as described in

chapter 4. We trained a new model with the weight parameter a = 0.7, which would

give more significance to the loss of the summarization decoder and should improve

performance. According to the training metrics there was improvement in training

accuracy however when inspecting the outputs and evaluating using ROUGE the out-

puts are still poor quality. We trained a third model with two further modifications;

we removed the bookend sentence tokens (0hti0,0 h/ti0)3 as these were often the sub-

ject of repetition. We reasoned that, since they are at the beginning and end of every

sentence their probability would be very high and therefore dominating the decoder’s

probability-based outputs. We also adjusted the weight a = 0.85 to further bias the

model toward favouring the summarization task. As can be seen from the examples in

figure 5.9 neither of these changes lead to a discernible improvement in the adequacy

or fluency of outputs of the MTL model. We do see differences in the results based

on our changes, results in tables 5.7 and 5.8, summarization quality as measured by

ROUGE is higher in the equal loss model. This is a surprising finding since we would

expect weighting the model toward the summarization task would improve summaries.

It does appear to increase the unigram precision significantly whilst decreasing the re-

call. We believe that this may be related to the loss function and future work might
3these have been shown to improve performance (Klein et al., 2017)
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consider using a weighted cross entropy to favour recall over precision, since this is

considered more important in the task of summarization (Panchapagesan et al., 2016).

Tag sequence prediction is significantly improved by removing the bookend tokens

and weighting the loss toward the summarization task. Although the majority of this

benefit is down to removing the bookend tokens there does appear to be a modest im-

provement from weighting the task as evidenced by our model that only includes the

weighting parameter a = 0.7. This is counterintuitive since we weight the loss towards

the summarization task and away from the tag sequence prediction task so, if anything,

we might expect performance on this task to go down. This creates a trade-off in our

model between performance on the primary summarization task versus performance

on the auxiliary tag sequence prediction task but in the opposite direction to our ex-

pectations.

In the context of our approach, the addition of an auxiliary task is hindering the

learned representations such that it is unable to perform either task as well as in a

single task approach. This could be due to several factors which we will now discuss.

model F1-1 B-1 R-1 F1-2 B-2 R-2 F1-L B-L R-L

LEAD 30.69 25.79 41.36 11.07 8.90 16.25 23.32 22.17 35.62

VEDA-summ 29.75 36.72 26.60 8.37 9.62 7.86 25.00 33.42 24.14

MTL equal loss 12.27 71.28 6.84 0.13 0.46 0.08 6.61 68.64 6.53
MTL weighted loss

a = 0.7

6.49 95.88 3.36 0.0 0.0 0.0 3.36 68.10 4.29

MTL weighted loss

a = 0.85

7.58 66.65 4.08 0.11 0.50 0.07 3.92 64.51 3.90

Table 5.7: Results for the MTL summarization task.

model F1 precision recall

MTL equal loss 0 0 0

MTL weighted loss a = 0.7 0.23 0.80 0.14

MTL weighted loss a = 0.85 26.20 61.20 18.50

Table 5.8: Results for the MTL TTSG task.
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Our primary concern is with the loss function. This could be ineffective for several

reasons in the context of sequence transduction, and made worse by resource con-

straints in the MTL setting. When observing the training dynamics the loss function

is clearly doing what it ought to, since the training accuracy increases and the loss

decreases. However, the loss function we use, the cross entropy loss between the

predicted and target sequences, is only a proxy measure of transduction quality. To

illustrate this, imagine we have a summary that repeats an important individual’s name

several times. If the model fails to form coherent summaries it might instead learn to

repeat certain keywords from the source text in order to blindly minimize the cross

entropy loss. We suspect this is what is happening in out case. One solution to this

would be to use a more accurate proxy of transduction accuracy such as ROUGE for

generating a loss function (e.g. 1 - ROUGE-1). The downside of this approach and

the reason it is not typical is that the ROUGE computation is very slow compared to

calculating the cross entropy and so it is practically unsuitable.

It might also be the case that the compound cross entropy loss function is not effec-

tive for learning good representations for these tasks together. We have two concerns

here. Firstly the compound loss is backpropagated through the whole model, including

both decoders. Although this is typical for multitask training (e.g. in Anastasopoulos

and Chiang (2018), we question whether this introduces complications for the decoder

training dynamics, since both decoders are also being updated by the compound loss

function which includes information about the other task, which is irrelevant for the

decoder stage. Ideally, the docoders would update based only on the loss relevant to

their own task but the gradients for these would be combined for updating the encoder

layer. Practically this is challenging, since we utilize the Pytorch auto-differentiation

function to handle updating weights efficiently and this proposal would require a cus-

tom differentiation module to handle combined gradients.

One solution would be to try a different multitask model architecture, for instance

rather than using hard parameter sharing, as we do in our model, soft parameter sharing

like that used by Luan et al. (2017) might lead to better results. Sadly, this was beyond

the scope of the present research.

Our hypothesis for the MTL experiments was that the auxiliary task of generating

topic tag sequences for the documents would help improve the generated summaries,

since it would encourage the model to attend to different tag topics during sequence

generation. It seems likely from our results that our main hypothesis for the MTL

experiments is false. Although it is possible that the experiment failed due to archi-
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Figure 5.9: Cropped plot of attention weights for the summarization decoder of our MTL

model. Generated output is on the top, source text on the left.

tectural or procedural parameters such as the loss function, our results point toward a

detrimental effect of MTL abstractive summary generation with this auxiliary TTSG

task. Furthermore, this detrimental effect is not moderate but is catastrophic for the

model outputs.
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Figure 5.10: Cropped plot of attention weights for the tag sequence decoder of our MTL

model. Generated output is on the top, source text on the left.
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5.4 Latent Representation Experiments

In these experiments we freeze the trained encoder from previous experiments and

train a classifier on top of the latent document representations to probe their capacity to

reconstruct labels that reflect global semantic classes of the source documents. This is

an application of a transfer learning methodology for evaluating representations. This

task involves predicting the correct class label for a document based on the section in

the newspaper it appears, in total 11 sections. Since there is significant class imbalance

in our source data we need to establish a chance baseline. Rather than computing this

using statistics we take a practical approach and use a randomized sample method.

We take our training data with class labels and randomly shuffle the labels and then

compute the accuracy of the randomly shuffled labels. We repeat this process 10 times

to get a good estimate of chance accuracy which is 12.4%, this gives us a lower bound

on the task. To obtain an upper bound we train a new task-specific model comprising

of the same encoder we use in the previous sequence transduction tasks with fully

trainable weights coupled with a single layer perceptron that predicts class probabilities

as in the class prediction side task. This model obtains a validation accuracy of 23.7%

on the class prediction task, which is our upper bound.

We had expected the upper bound to be significantly higher to give a greater range

for this to be useful for a metric, however this was not the case. Table 5.10 shows

the results for our different models and the upper and lower bounds for the task for

reference. We can see that all models perform above chance on this task, meaning

that their latent representations learn some information that is useful for reconstruct-

ing the class labels. As we hypothesized the summarization single task has the worst

performance of our models on this task however the difference in performance is mod-

est, with the TTSG single-task model, VEDA-tag, scoring just 1.16% higher accuracy.

The three MTL models perform best, scoring between 20.22% and 20.60%, however

with such small differences between them we cannot justify significant debate around

these scores without a statistical analysis, which was beyond the scope of the present

research as it would require several reruns for each of the models. Figure 5.11 shows a

2D projection of the encoder latent space representations of the validation dataset for

the multitask model (a = 0.85) coloured by the true target class of the transfer learn-

ing side task. It is clear from visual inspection that the model has learned separable

representations across some, but not all, of the classes.

These findings give some weight toward our hypotheses regarding latent represen-
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Figure 5.11: This figure shows a 2d projection of the encoder latent state representa-

tions used for transfer learning coloured by target class labels of the side task for the

multitask model (a = 0.85). We can see visually the separation of some classes from

others. The projection is done using Uniform Manifold Projection and Approximation

(UMAP, McInnes and Healy (2018)

tations. Firstly, that the topic tag sequence model, VEDA-tag, learns latent represen-

tations that are better at reconstructing the document semantic class than the repre-

sentations learned by the single-task summarization model. Secondly, that by training

a summarization model as part of a MTL model with an auxiliary tag sequence gen-

eration task we encourage learned latent representations that are also more useful for

predicting the document semantic classes. We suggest that the semantics-oriented aux-

iliary task has increased the gathering of semantic information from the source texts.

This, however, did not lead to improved summaries due to the observed catastrophic

failure of the MTL models.
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Model Text

REF summary ”brexit so complex it could overwhelm politicians , warn senior academics

. independent group says leaving eu will test constitution and legal frame-

work to their limits and possibly beyond .”

REF tags ”eu referendum and brexit, european union, foreign policy, politics,

uk news, academic experts, business, europe, world˙news”

VEDA-summ ”theresa may to meet uk over eu membership plan . former health secretary

says uk s eu membership will be a priority for britain s future , but says it

will not be able to meet .”

VEDA-tag ”eu referendum and brexit, uk news, european union, foreign policy, pol-

itics”

MTL-summ (equal

loss)

”uk : uk uk to to to to to to to to , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

...”[trunc.]

MTL-tag (equal

loss)

”arizona cardinals, arizona cardinals, arizona cardinals, communism,

communism, communism”

MTL-summ

(a = 0.7)

”eu eu eu eu eu eu eu eu eu eu eu eu eu eu eu eu eu...”[trunc.]

MTL-tag (a = 0.7) ”art and design, art and design, art and design...”[trunc.]

MTL-summ

(a = 0.85)

”theresa eu eu eu eu eu eu eu eu the the the the...”[trunc.]

MTL-tag (a = 0.85) ”eu referendum and brexit, eu referendum and brexit,

eu referendum and brexit,...”[trunc.]

Table 5.9: Example generated outputs for the multitask models. Outputs truncated

where the same token is repeated.
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model Accuracy (%)

Chance (lower bound) 12.41

VEDA-summ 18.98

VEDA-tag 20.14

MTL Equal loss 20.52

MTL alpha = 0.7 20.22

MTL alpha = 0.85 20.60

Task-specific (upper bound) 23.75

Table 5.10: Results for the document global semantic class prediction side task.
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Conclusion

In this research we present a series of experiments investigating encoder-decoder mod-

els for sequence transduction and methods for inspecting and manipulating the learned

latent representations, in particular through a MTL framework. We do this within

the context of a novel dataset of news articles and associated side information from

the Guardian newspaper. After describing relevant aspects of the novel dataset we

train several models using recent SOTA architectures and an existing modelling li-

brary, Open-NMT, to establish high quality benchmarks. We then train our own model

using a relatively simple architecture and show that its performance is equivalent to

the Open-NMT model. We compare our new dataset with the existing CNN / Daily

Mail benchmark dataset for abstractive summarization and show that it is a reasonable

candidate task and has some appealing qualities, such as a high novel bigram rate for

the reference summaries. We perform a regression analysis of the ROUGE metrics

across our different models and show that high and low performance are not consistent

across models and test examples. This is an interesting finding since it suggests that an

ensemble of different models with a learned policy to weight outputs toward a particu-

lar model conditioned on qualities of the source text might lead to significant gains in

performance.

We then show that the same encoder-decoder model can be used to learn to generate

reasonably high quality sequences of topic tags, a piece of side information associated

with the articles. We combine the two sequence transduction tasks using an encoder-

dual-decoder model as an example of hard parameter sharing MTL. We fail to train a

model able to generate high quality outputs for either task under MTL, despite trying

several adaptations including a weighted compound loss function and modification to

the source data. We consider several causes for this failure, including the compound

61
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loss function, limited representational capacity in the model, the particular MTL archi-

tecture used, too small training data, too few training epochs and under-regularization.

We speculate that the task objectives are adversarial and lead to detrimental perfor-

mance on both tasks and catastrophic failure of the model to learn good representations

for either task. This finding is in contrast to the reviewed literature finding MTL to be

beneficial to an number of NLP tasks (Collobert and Weston, 2008; Ruder, 2017).

Finally, we construct an experiment to probe the information captured by the latent

representations learned by the encoders across our various tasks. We do this using a

transfer learning approach, where we freeze the weights of the trained encoders and

detach this from the decoder. We then train a classifier over the latent representations

to predict the semantic class of the source document. We show that, whilst the single-

task summarization model learns some information useful for reconstructing the article

class, it learns less information that the encoder for the TTSG task and by combining

the two tasks using the encoder-dual-decoder MTL model we encourage representa-

tions that contain more information relating to the global article semantics resulting in

increased prediction accuracy for the class prediction side task.

6.1 Future Work

We identify a number of areas where further research might prove fruitful. We find ev-

idence for qualitative differences in high and low performance for different sequence

transduction architectures. Further investigation of these differences might lead to

successful ensemble strategies that give rise to adaptive models conditional on a pre-

analysis of the source text. Whilst a departure from the holy grail of unified architec-

tures these may lead to performance improvements. We also identify differing perfor-

mance across article categories. It is quite likely there are different ’styles’ of sum-

marization, future work might investigate models that formally account for this latent

conditional information (Some work has been done in this area already e.g. Narayan

(2018)).

Our research would have been improved significantly with the inclusion of human

evaluation. Although platforms like Amazon’s Mechanical Turk have made this wildly

more accessible there is still a significant barrier in including human evaluation in an

agile way. Better automated methods would also be beneficial (Novikova et al., 2017).

During the course of this research we made some early attempts at using universal sen-
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tence embeddings and simple distance metrics1 (Conneau et al., 2017). Interestingly,

sentence embeddings may solve two issues in automatic evaluation simultaneously.

Firstly, they allocate importance weights to individual words in a sentence, based on

training on a very large corpus (see figure 6.1), meaning we can create weighted eval-

uations that ignore less important words. Secondly, by computing scores based on

embedding distances we are no longer restricted to evaluation based on appearance

of exact tokens, since a high quality paraphrase using a different vocabulary will still

appear close in this evaluation space. By transforming the reference and generated

sequences to sentence embeddings and computing, for example, the cosine similarity

of the resulting vectors we get a distance measure that accounts for word importance

and is sympathetic to synonym exchange. We were able to implement this however

we were unable to perform a robust evaluation. Anecdotally it appeared to perform

as well as, or better, than ROUGE in some cases. A limitation is that this metric is

less interpretable than ROUGE, so it could not serve as a replacement. It could also,

alternatively, be used as a value function during training (or as a loss function in the

form 1�distance). Further research into such approaches might prove valuable.

Figure 6.1: Word importance weights for a reference summary from our dataset.

We would also recommend exploring these approaches with larger and more varied

datasets, possibly by combining data from different summarization tasks to see if this
1not reported as this work was not completed but we consider it work discussing as future work.
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leads to more generalizable summarization strategies. The present work would also

be improved upon by considering better regularization strategies such as variational

dropout (Gal and Ghahramani, 2016) and zoneout (Krueger et al., 2016). We feel that

the loss function used may be hindering the learning dynamics and that there might

be better loss functions leading to better sequence outputs, particularly in the case of

the summarization task. The MTL model we explored is only one of many approaches

that could be taken, we would also like to consider soft parameter sharing methods,

and other MTL structures such as cascaded or triangular MTL (Anastasopoulos and

Chiang, 2018).

Alternative attention functions may also enable higher performance on these types

of tasks. For example multi-head attention enables the model to jointly attend to infor-

mation from different representation subspaces at different positions (Vaswani et al.,

2017). Other model architectures such as the Transformer (Vaswani et al., 2017) or

Convolutional sequence-to-sequence (Gehring et al., 2017) models might also perform

better on these tasks.

We also consider the suitability of our auxiliary task. We assumed that our side

task of topic tag sequence generation was complimentary to the primary summariza-

tion task, however perhaps this is not the case. Although previous research has made

use of dual and multi-decoder models (Luong et al., 2015b) our work is the first to our

knowledge where the two tasks are not monotonically aligned. We may see greater

success, for example, if we reordered the tag sequences to align better with the refer-

ence summaries.
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Model Text

SOURCE ”it was the night that london s underground finally became a 00-hour service , or

, as one driver put it in an announcement : it s 0am and you lot are still on the

tube . the victoria and central lines are the first two underground lines launching a

night service . the northern , jubilee and piccadilly lines are expected to follow suit

before the year is out . friday s service started with little fanfare at walthamstow

central , as the 00.00 departure , newly classified on the timetable as a night tube ,

left with only a few people on board . naso koutzoukis was one of them . originally

from athens , and having lived in london for five years , he d travelled on the train

specifically to head in to town to see the drunken crowds . it should be fun . naso

koutzoukis travelling in the first night tube train on victoria line . related : londons

night tube set for weekend debut passenger numbers swelled and the volume of chat

rose as the train headed into central london . the aptly named victoria from brixton

was unconvinced it really counted as the victoria line night tube yet , as a train ran

at this time every evening . she began asking people how they felt about being on

the almost night tube . i m a f**king pest on the tube . people either love it or hate

it , but i m always asking who are you , where are you going , what are you doing .

victoria from brixton in full pest mode , talking to fellow passengers . on the return

journey from brixton , kevin chauphary was much more sure he was on an actual

night tube . i definitely think it s a momentous occasion for all of us londoners . it

increases safety massively . you are not just loitering around waiting for a night bus

. london s night tube service kicks off night bus services have also been improved

to coincide with the night tube s launch , with eight routes extended to 00-hour

operation to provide additional connections to areas being served by the night tube .

at 0.00am , back at walthamstow central , with a flurry of tfl officials , press people

and a couple of guardian angels in...”

Table A.1: Source text for generated summaries in table 5.2 in chapter 5.
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Model Text

SOURCE ”crystal palace are set to break their club record fee to sign the wigan midfielder

james mcarthur for 0m . mcarthur s transfer would surpass the former club record

fee paid to peterborough last summer for dwight gayle , and would cost palace the

same figure wigan agreed with leicester city before they opted instead to secure es-

teban cambiasso on a 00-month deal . there had been suggestions over the weekend

that palace might send adl ne guedioura the other way , with the finer details of

the deal still to be finalised . talks continue with tottenham hotspur over zeki fry-

ers , whom palace had initially hoped to secure on loan but may now have to sign

permanently . the young left back is apparently already at the training ground in

beckenham in anticipation of the completion of that move to south london . glenn

murray could also leave selhurst park but only if the new manager neil warnock can

secure another striker as a replacement . nottingham forest , reading and ipswich

are all thought to be interested in signing the player who scored 00 championship

goals in palace s promotion season in 0000-00.”

Table A.2: Source text for generated summaries in table 5.3 in chapter 5.
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